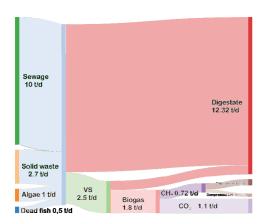
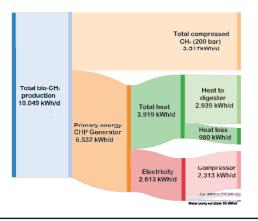
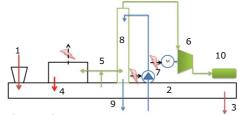

# Offshore biomethane production: the new frontier of anaerobic digestion in aquaculture and maritime operations

Mario A. Rosato - Sustainable Technologies SL, Barcelona, Spain


## **Euthrophication and GHG emissions from maritime activities**


- . Current MARPOL directives allow dumping of ships waste (solid and sewage) directly to the sea, as long as this operation is carried out at a minimum distance of 12 nautical miles from the coast.
- . Sea pollution caused by maritime traffic is a rising source of concern for consumers.
- . Fish farming activities cause euthrophication and adverse impact on the seabed, leading to anoxic conditions and associated CH<sub>4</sub> emissions. Dead fish attract predators and unbalance the throphic chain.
- . All current ships' motors run on fossil fuels and emit CO2.




## The Floating Anaerobic Digester (FAD)

- Concept developed within the H2Ocean project (www.h2ocean-project.eu), co-funded by the EU 7<sup>th</sup> Framework Programme (FP7/2007-2013) under grant agreement No 288145 within the OCEAN OF TOMORROW JOINT CALL 2011.
- Goals: to reduce the organic load to the marine environment and to produce biomethane offshore, in order to partially replace Diesel oil for fisher boats and commercial vessels.







## How it works

Organic waste from maritime operations is loaded to the hopper and shredded (1); the waste stream is digested in (2), a novel type of oscillating reactor (patent pending); the digestates (30% of influent COD) are dumped to the sea (3); the digester is kept at 38°C with the hot water from a CHP generator (4) running on biogas (5) and producing electricity to feed the biomethane compressor (6) and sea water pump (7) which washes the excess biogas in a scrubber (8), discharging the saturated water back to the sea (9). The compressed biomethane is stored in steel cylinders @ 200 bar (10).

#### Materials and methods

Samples of different species of algae were taken from several locations in the Mediterranean and North Atlantic. Samples of several species of fish waste were collected from a fisher's shop. The BMP (biochemical methane potential) was measured with an **AMPTS II** (Automatic Methane Potential Test System) of **Bioprocess Control AB** with different inoculums. The feasibility of  $H_2$  production by means of dark fermentation was assessed, finding conventional biomethane production more effective and convenient. A novel type of digester, suitable for operation in offshore environment, was conceptually developed and a patent applied. A new protocol for minimum error in the BMP assay was developed and is still under test prior to its publication.



#### Conclusions

- 1. In the special case of offshore biomethane production, 2,53 Nm³ of CH<sub>4</sub> must be produced from organic waste in order to obtain 1 Nm³ compressed @ 200 bar, ready for use as fuel in ships. The resulting EROIE (energy return on invested energy) is 0.4.
- 2. Washing the biogas with sea water in order to obtain biomethane is feasible, since the energy consumption for pumping the seawater is less than 1% of the LHV of the biomethane.
- 3. Producing electricity to compress the biomethane by means of a conventional CHP generator leads to a very low EROIE hence it is advisable that the compressor is fed with energy from the wind or the waves.

Download this poster in PDF



www.sustainable-technologies.eu